Jump to content
Objectivism Online Forum

Economic Freedom's: Objectivists are working to save the world from tyranny--isn't that altruism?

Rate this topic


Recommended Posts

On the origins of human reason and morality, I'd bet on the worth of Michael Tomasello. I have purchased three of his books years past, but as yet have not gotten to read them:

A Natural History of Human Thinking

From the Publisher –

Quote

Tool-making or culture, language or religious belief: ever since Darwin, thinkers have struggled to identify what fundamentally differentiates human beings from other animals. In this much-anticipated book, Michael Tomasello weaves his twenty years of comparative studies of humans and great apes into a compelling argument that cooperative social interaction is the key to our cognitive uniqueness. Once our ancestors learned to put their heads together with others to pursue shared goals, humankind was on an evolutionary path all its own.

Tomasello argues that our prehuman ancestors, like today’s great apes, were social beings who could solve problems by thinking. But they were almost entirely competitive, aiming only at their individual goals. As ecological changes forced them into more cooperative living arrangements, early humans had to coordinate their actions and communicate their thoughts with collaborative partners. Tomasello’s “shared intentionality hypothesis” captures how these more socially complex forms of life led to more conceptually complex forms of thinking. In order to survive, humans had to learn to see the world from multiple social perspectives, to draw socially recursive inferences, and to monitor their own thinking via the normative standards of the group. Even language and culture arose from the preexisting need to work together. What differentiates us most from other great apes, Tomasello proposes, are the new forms of thinking engendered by our new forms of collaborative and communicative interaction.

A Natural History of Human Thinking is the most detailed scientific analysis to date of the connection between human sociality and cognition.

A Natural History of Human Morality

From the Publisher – 

Quote

 

Michael Tomasello reconstructs how early humans gradually became an ultra-cooperative and, eventually, a moral species.

There were two key evolutionary steps, each founded on a new way that individuals could act together as a plural agent “we”. The first step occurred as ecological challenges forced early humans to forage together collaboratively or die. To coordinate these collaborative activities, humans evolved cognitive skills of joint intentionality, ensuring that both partners knew together the normative standards governing each role. To reduce risk, individuals could make an explicit joint commitment that “we” forage together and share the spoils together as equally deserving partners, based on shared senses of trust, respect, and responsibility. The second step occurred as human populations grew and the division of labor became more complex. Distinct cultural groups emerged that demanded from members loyalty, conformity, and cultural identity. In becoming members of a new cultural “we”, modern humans evolved cognitive skills of collective intentionality, resulting in culturally created and objectified norms of right and wrong that everyone in the group saw as legitimate morals for anyone who would be one of “us”.

As a result of this two-stage process, contemporary humans possess both a second-personal morality for face-to-face engagement with individuals and a group-minded “objective” morality that obliges them to the moral community as a whole.

 

Becoming Human – A theory of Ontogeny

From the Publisher –

Quote

A radical reconsideration of how we develop the qualities that make us human, based on decades of cutting-edge experimental work by the former director of the Max Planck Institute for Evolutionary Anthropology.

Virtually all theories of how humans have become such a distinctive species focus on evolution. Here, Michael Tomasello proposes a complementary theory of human uniqueness, focused on development. Building on the seminal ideas of Vygotsky, his data-driven model explains how those things that make us most human are constructed during the first years of a child’s life.

Tomasello assembles nearly three decades of experimental work with chimpanzees, bonobos, and human children to propose a new framework for psychological growth between birth and seven years of age. He identifies eight pathways that starkly differentiate humans from their closest primate relatives: social cognition, communication, cultural learning, cooperative thinking, collaboration, prosociality, social norms, and moral identity. In each of these, great apes possess rudimentary abilities. But then, Tomasello argues, the maturation of humans’ evolved capacities for shared intentionality transform these abilities―through the new forms of sociocultural interaction they enable―into uniquely human cognition and sociality. The first step occurs around nine months, with the emergence of joint intentionality, exercised mostly with caregiving adults. The second step occurs around three years, with the emergence of collective intentionality involving both authoritative adults, who convey cultural knowledge, and coequal peers, who elicit collaboration and communication. Finally, by age six or seven, children become responsible for self-regulating their beliefs and actions so that they comport with cultural norms.


Becoming Human places human sociocultural activity within the framework of modern evolutionary theory, and shows how biology creates the conditions under which culture does its work.

Nozick on The Geneology of Ethics

Rand and Evolution

Edited by Boydstun
Link to comment
Share on other sites

Concerning Rand's definition of reason:

Rand’s definition of reason is: the faculty that identifies and integrates the evidence of the senses. In my dictionary, I find reason defined as the capacity for rational thought, rational inference, or rational discrimination. The terms rational and thought go to already familiar synonymies with reason. The differentia within the rational, in this dictionary definition, are the discriminatory and the inferential.

Rand’s definition stays close to the common usage reflected by the dictionary, but it replaces discrimination and inference by their kin identification and integration, it eliminates the non-explicative rational, and it adds a base for the activities of reason, specifically, deliverances of the senses. Rand’s definition is explanatory of the common usage found in the dictionary, and it is tailored to tie neatly to a particular wider philosophical view. 

Quine could say this is a fine explicative type of definition. Rand has given the term reason a new synonymy. The various contexts in which reason under the dictionary definition is properly used remain contexts in which reason under the new, explicative definition is properly used. The new definition covers the processes of drawing distinctions and making inferences. The new definition also applies to the wider processes of identification and integration of sensory evidence, processes in which the narrower processes are embedded.

Edited by Boydstun
Link to comment
Share on other sites

From that second link, in the preceding post, to Lennox:

Quote

One can understand why devout and orthodox Christians would have problems; but why Darwin’s philosophical and scientific mentors? It would seem to be the model of Herschelian/Lyellian orthodoxy.

2.3 Philosophical Problems with Darwin’s Darwinism

The answer lies in five philosophically problematic elements of the theory.

2.3.1 Probability and Chance

First, notice the use of the language of ‘tendencies’ and ‘frequencies’ in the above principles. Privately, Darwin learned, Herschel had referred to his theory as ‘the Law of higgledy-piggledy’, presumably a reference to the large element played in its key principles by chance and probability. Darwin’s theory is, as we would say today, a ‘statistical’ theory. One cannot say that every individual with favorable variation v will survive or will leave more offspring than individuals without it; one cannot say that no environment will ever support all of the offspring produced in a given generation, and thus that there must always be a competitive struggle. These are things that tend to happen due to clearly articulated causes, and this allows us to make accurate predictions about trends, at the level of populations, but not to make absolute claims about what must happen in each and every case. Only well after Herschel’s time did philosophers of science become comfortable with the idea of a theory of this sort, and the proper philosophical understanding of such explanations is still debated.

2.3.2 The Nature, Power and Scope of Selection

The core of Darwin’s theory is the concept of natural selection. Perhaps because of his use of the term selection, this core element of his theory apparently baffled nearly everyone. Could it be, as Lyell, Herschel and Darwin’s great American defender Asa Gray would ask, an ‘intermediate cause’, i.e. a causal principle instituted and sustained by God? Or is it, in its very nature, the antithesis of such a principle, as his old geology teacher Sedgwick believed? Could it possibly create species, or is it, by its nature, a negative force, eliminating what has already been created by other means? In one of his copies of On the Origin of Species, Alfred Russell Wallace crosses out ‘natural selection’ and writes ‘survival of the fittest’ next to it. Wallace always felt that ‘selection’ inappropriately imported anthropomorphic notions of Nature choosing purposefully between variants into natural history. And, in a devastating review, Fleeming Jenkin happily accepted the principle of natural selection but challenged its power to modify an ancestral species into descendent species, and thus limited its scope to the production of varieties. A number of reviewers, even some sympathetic ones, questioned the possibility of extending the theory to account for the evolution of those characteristics that differentiate humans from their nearest relatives.

2.3.3 Selection, Adaptation and Teleology

Moreover, because Darwin was very fond of describing natural selection as a process that worked for the good of each species, Darwin’s followers seemed to have diametrically opposed views as to whether his theory eliminated final causes from natural science or breathed new life into them. In either case, there was also serious disagreement on whether this was a good thing or a bad thing.[8

2.3.4 Nominalism and Essentialism

There is a fundamental philosophical problem with the idea that a species can undergo a series of changes that will cause it to become one or more other species. To illustrate it, look carefully at the first question that Charles Lyell wishes to address in the second volume of the Principles of Geology:

…first, whether species have a real and permanent existence in nature; or whether they are capable, as some naturalists pretend, of being indefinitely modified in the course of a long series of generations. (Lyell 1831, II. 1)

Lyell pretty clearly assumes that to allow for evolution is to deny the reality of species. For a species to be ‘real’, it must have ‘permanent existence in nature’, or as he puts it elsewhere , “…fixed limits beyond which the descendants from common parents can never deviate from a certain type…”. (Lyell 1831, II. 23) To accept evolutionary change, on this view, you must become comfortable with a variety of nominalism about species. And Darwin seems to have become so.[9]

Hence I look at individual differences, though of small interest to the systematist, as of high importance for us, as being the first step towards such slight varieties as are barely thought worth recording in works on natural history. And I look at varieties which are in any degree more distinct and permanent, as steps leading to more strongly marked and more permanent varieties; and at these latter, as leading to sub-species, and to species. (Darwin 1859, 52)

Permanence, as applied to species, is for Darwin a relative concept, and there are no fixed limits to variability within a species. Given enough time the individual differences found in all populations can give rise to more permanent and stable varieties, these to sub-species, and these to populations that systematists will want to class as distinct species. Moreover, he concludes the Origin with very strong words on this topic, words bound to alarm his philosophical readers:

Systematists will be able to pursue their labours as at present; but they will not be incessantly haunted by the shadowy doubt whether this or that form be in essence a species. …In short, we will have to treat species in the same manner as those naturalists treat genera, who admit that genera are merely artificial combinations made for convenience. This may not be a cheering prospect; but we shall at least be freed from the vain search for the undiscovered and undiscoverable essence of the term species. (Darwin 1859, 485)

Lyell, Herschel, Whewell, Sedgwick and many of Darwin’s contemporaries certainly would not find this a cheering prospect, since they were unrepentant essentialists about species.[10] Members of a species possess a ‘type’ established in the original parents, and this type provides ‘fixed limits’ to variability. Lyell clearly feels this is an empirically verifiable fact—most of chapters 2–4 of Principles Vol. II is devoted to presenting the evidence that such ‘fixed limits’ exist; and after the Origin’s publication this evidence was canvassed again in Fleeming Jenkin’s review. If this is so, then species extinction is easy to account for—there are fixed limits to a species’ ability to track environmental change. But a naturalistic account of species origination is more difficult, since there will need to be, in sexually reproducing species, a natural production of a new pair of parents with a new type. On the other hand, to adopt the sort of nominalism that Darwin seems to be advocating in the above quotations has undesirable consequences as well. How are we to formulate objective principles of classification? What sort of a science of animals and plants will be possible if there are no fixed laws relating their natures to their characteristics and behaviors? A good deal of chapter 2 of Darwin’s Origin is devoted to convincing the reader that current best practice among botanists and zoologists accepts a natural world organized as he is insisting rather than as his opponents claim:

It must be admitted that many forms, considered by highly competent judges as varieties, have so perfectly the character of species that they are ranked by other highly competent judges as good and true species. (Darwin 1859, 49)

From a Darwinian perspective, this is a predictable consequence of the fact that the organisms we today wish to classify as species are merely the most recent stage of a slow, gradual evolutionary process. Organisms within a genus have common ancestors, perhaps relatively recent common ancestors; some naturalists may see ten species with a few varieties in each; others may rank some of the varieties as species and divide the same genus into twenty species. Both classifications may be done with the utmost objectivity and care by skilled observers. As systematists like to say, some of us are ‘lumpers’, some of us are ‘splitters’. Reality is neither.

2.3.5 Tempo and Mode of Evolutionary Change

The question of nominalism versus realism regarding species points toward a final aspect of Darwin’s theory with which many of those otherwise sympathetic to him disagreed, his gradualism. For apart from the question of whether his views entailed ‘nominalism’ about natural kinds, they do seem to reflect a belief that the evolutionary process must be a slow and gradual one. It is perhaps here that we see the most lasting impact of Darwin’s careful study of Charles Lyell’s Principles of Geology while on H.M.S. Beagle. I stress slow and gradual, for it is clear that one could have a slow but non-gradual evolutionary process (perhaps the long periods of evolutionary stasis punctuated by geologically rapid periods of speciation postulated by Eldridge and Gould’s ‘punctuated equilibrium model’ is such); and one could have a rapid but gradual one (for example the process George Gaylord Simpson labeled ‘adaptive radiation’, where a population migrates to a location with a variety of unexploited niches, and rapidly evolves to exploit them). Darwin stresses over and over again that he conceives of natural selection ‘adding up infinitely small variations’, and that he imagines the process of speciation to take place over a very long period of time.

One of the strongest arguments for insisting that ‘Darwinism’ as it is used today is isomorphic to Darwin’s Darwinism, as Gayon puts it, is that each of these questions is still hotly debated, and has been throughout the theory’s history. With all of the amazing changes that have been wrought by the genetic, biochemical, and molecular revolutions, with the development of mathematical models of population genetics and ecology, of sophisticated techniques for both field and laboratory investigation of evolutionary processes, and of cladistic analysis in systematics, it nevertheless remains true that one can find evolutionary biologists who adhere to Darwin’s Darwinism, and are recognized as doing so by both themselves and their critics. In the next section of this article, I will develop a portrait of contemporary Darwinism around each of these contested features.

By the same token, however, Darwinism has evolved. As one example of this truth, think for a moment of contemporary debates about the nature of selection. The problems people had with natural selection in the 19th century continue to be problematic, but there are a variety of problems that were either not discussed, or discussed very differently, in the 19th century. Can, and does, natural selection work at levels other than the level of Darwin’s focus, individual organisms; is there a non-vacuous way to formulate the theory abstractly; how are we to understand the relationships between the concepts of fitness, selection and adaptation? How strong are the constraints on the selection process, and what sorts of constraints are there? Are there other motors of evolutionary change besides selection, and if so, how important are they? In particular, how important is ‘drift’, and how are we to differentiate it from selection?

 

 

 

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Loading...
  • Recently Browsing   0 members

    • No registered users viewing this page.
×
×
  • Create New...